Правильные многогранники. Почему правильные многогранники получили такие названия Как называется многогранник две грани которого

Содержание статьи

МНОГОГРАННИК, часть пространства, ограниченная совокупностью конечного числа плоских многоугольников, соединенных таким образом, что каждая сторона любого многоугольника является стороной ровно одного другого многоугольника (называемого смежным), причем вокруг каждой вершины существует ровно один цикл многоугольников. Эти многоугольники называются гранями, их стороны – ребрами, а вершины – вершинами многогранника.

На рис. 1 представлены несколько известных многогранников. Первые два служат примерами р -угольных пирамид, т.е. многогранников, состоящих из р -угольника, называемого основанием, и р треугольников, примыкающих к основанию и имеющих общую вершину (называемую вершиной пирамиды). При р = 3 (см . рис. 1,а ) основанием может служить любая грань пирамиды. Пирамида, основание которой имеет форму правильного р -угольника, называется правильной р -угольной пирамидой. Так, можно говорить о квадратных, правильных пятиугольных и т.д. пирамидах. На рис. 1,в , 1,г и 1,д приведены примеры некоторого класса многогранников, вершины которых можно разделить на два множества из одинакового числа точек; точки каждого из этих множеств являются вершинами р -угольника, причем плоскости обоих p -угольников параллельны. Если эти два р -угольника (основания) конгруэнтны и расположены так, что вершины одного р р -угольника параллельными прямолинейными отрезками, то такой многогранник называется р -угольной призмой. Примерами двух р -угольных призм могут служить треугольная призма (р = 3) на рис. 1,в и пятиугольная призма (р = 5) на рис. 1,г . Если же основания расположены так, что вершины одного р -угольника соединены с вершинами другого р -угольника зигзагообразной ломаной, состоящей из 2р прямолинейных отрезков, как на рис. 1,д , то такой многогранник называется р -угольной антипризмой.

Кроме двух оснований, у р -угольной призмы имеются р граней – параллелограммов. Если параллелограммы имеют форму прямоугольников, то призма называется прямой, а если к тому же основаниями служат правильные р -угольники, то призма называется прямой правильной р -угольной призмой. р -угольная антипризма имеет (2p + 2) граней: 2р треугольных граней и два p -угольных основания. Если основаниями служат конгруэнтные правильные р -угольники, а прямая, соединяющая их центры, перпендикулярна их плоскостям, то антипризма называется прямой правильной р -угольной антипризмой.

В определении многогранника последняя оговорка сделана для того, чтобы исключить из рассмотрения такие аномалии, как две пирамиды с общей вершиной. Теперь мы введем дополнительное ограничение множества допустимых многогранников, потребовав, чтобы никакие две грани не пересекались, как на рис. 1,е . Любой многогранник, удовлетворяющий этому требованию, делит пространство на две части, одна из которых конечна и называется «внутренней». Другая, оставшаяся часть, называется внешней.

Многогранник называется выпуклым, если ни один прямолинейный отрезок, соединяющий любые две его точки, не содержит точек, принадлежащих внешнему пространству. Многогранники на рис. 1,а , 1,б , 1,в и 1,д выпуклые, а пятиугольная призма на рис. 1,г не выпуклая, так как, например, отрезок PQ содержит точки, лежащие во внешнем пространстве призмы.

ПРАВИЛЬНЫЕ МНОГОГРАННИКИ

Выпуклый многогранник называется правильным, если он удовлетворяет следующим двум условиям:

283(i) все его грани – конгруэнтные правильные многоугольники;

(ii) к каждой вершине примыкает одно и то же число граней.

Если все грани – правильные р -угольники и q из них примыкают к каждой вершине, то такой правильный многогранник обозначается {p , q }. Это обозначение было предложено Л.Шлефли (1814–1895), швейцарским математиком, которому принадлежит немало изящных результатов в геометрии и математическом анализе.

Существуют невыпуклые многогранники, у которых грани пересекаются и которые называются «правильными звездчатыми многогранниками». Так как мы условились такие многогранники не рассматривать, то под правильными многогранниками мы будем понимать исключительно выпуклые правильные многогранники.

Платоновы тела.

На рис. 2 изображены правильные многогранники. Простейшим из них является правильный тетраэдр, гранями которого служат четыре равносторонних треугольника и к каждой из вершин примыкают по три грани. Тетраэдру соответствует запись {3, 3}. Это не что иное, как частный случай треугольной пирамиды. Наиболее известен из правильных многогранников куб (иногда называемый правильным гексаэдром) – прямая квадратная призма, все шесть граней которой – квадраты. Так как к каждой вершине примыкают по 3 квадрата, куб обозначается {4, 3}. Если две конгруэнтные квадратные пирамиды с гранями, имеющими форму равносторонних треугольников, совместить основаниями, то получится многогранник, называемый правильным октаэдром. Он ограничен восемью равносторонними треугольниками, к каждой из вершин примыкают по четыре треугольника, и следовательно, ему соответствует запись {3, 4}. Правильный октаэдр можно рассматривать и как частный случай прямой правильной треугольной антипризмы. Рассмотрим теперь прямую правильную пятиугольную антипризму, грани которой имеют форму равносторонних треугольников, и две правильные пятиугольные пирамиды, основания которых конгруэнтны основанию антипризмы, а грани имеют форму равносторонних треугольников. Если эти пирамиды присоединить к антипризме, совместив их основания, то получится еще один правильный многогранник. Двадцать его граней имеют форму равносторонних треугольников, к каждой вершине примыкают по пять граней. Такой многогранник называется правильным икосаэдром и обозначается {3, 5}. Помимо четырех названных выше правильных многогранников, существует еще один – правильный додекаэдр, ограниченный двенадцатью пятиугольными гранями; к каждой его вершине примыкают по три грани, поэтому додекаэдр обозначается как {5, 3}.

Пять перечисленных выше правильных многогранников, часто называемых также «телами Платона », захватили воображение математиков, мистиков и философов древности более двух тысяч лет назад. Древние греки даже установили мистическое соответствие между тетраэдром, кубом, октаэдром и икосаэдром и четырьмя природными началами – огнем, землей, воздухом и водой. Что касается пятого правильного многогранника, додекаэдра, то они рассматривали его как форму Вселенной. Эти идеи не являются одним лишь достоянием прошлого. И сейчас, спустя два тысячелетия, многих привлекает лежащее в их основе эстетическое начало. О том, что они не утратили свою притягательность и поныне, весьма убедительно свидетельствует картина испанского художника Сальвадора Дали Тайная вечеря .

Древними греками исследовались также и многие геометрические свойства платоновых тел; с плодами их изысканий можно ознакомиться по 13-й книге Начал Евклида . Изучение платоновых тел и связанных с ними фигур продолжается и поныне. И хотя основными мотивами современных исследований служат красота и симметрия, они имеют также и некоторое научное значение, особенно в кристаллографии. Кристаллы поваренной соли, тиоантимонида натрия и хромовых квасцов встречаются в природе в виде куба, тетраэдра и октаэдра соответственно. Икосаэдр и додекаэдр среди кристаллических форм не встречаются, но их можно наблюдать среди форм микроскопических морских организмов, известных под названием радиолярий.

Число правильных многогранников.

Естественно спросить, существуют ли кроме платоновых тел другие правильные многогранники. Как показывают следующие простые соображения, ответ должен быть отрицательным. Пусть {p , q } – произвольный правильный многогранник. Так как его гранями служат правильные р -угольники, их внутренние углы, как нетрудно показать, равны (180 – 360/р ) или 180 (1 – 2/р ) градусам. Так как многогранник {p , q } выпуклый, сумма всех внутренних углов по граням, примыкающим к любой из его вершин, должна быть меньше 360 градусов. Но к каждой вершине примыкают q граней, поэтому должно выполняться неравенство

Нетрудно видеть, что p и q должны быть больше 2. Подставляя в (1) р = 3, мы обнаруживаем, что единственными допустимыми значениями q в этом случае являются 3, 4 и 5, т.е. получаем многогранники {3, 3}, {3, 4} и {3, 5}. При р = 4 единственным допустимым значением q является 3, т.е. многогранник {4, 3}, при р = 5 неравенству (1) также удовлетворяет только q = 3, т.е. многогранник {5, 3}. При p > 5 допустимых значений q не существует. Следовательно, других правильных многогранников, кроме тел Платона, не существует.

Все пять правильных многогранников перечислены в таблице, приведенной ниже. В трех последних столбцах указаны N 0 – число вершин, N 1 – число ребер и N 2 – число граней каждого многогранника.

К сожалению, приводимое во многих учебниках геометрии определение правильного многогранника неполно. Распространенная ошибка состоит в том, что в определении требуется лишь выполнение приведенного выше условия (i), но упускается из виду условие (ii). Между тем условие (ii) совершенно необходимо, в чем проще всего убедиться, рассмотрев выпуклый многогранник, удовлетворяющий условию (i), но не удовлетворяющий условию (ii). Простейший пример такого рода можно построить, отождествив грань правильного тетраэдра с гранью еще одного тетраэдра, конгруэнтного первому. В результате мы получим выпуклый многогранник, шестью гранями которого являются конгруэнтные равносторонние треугольники. Однако к одним вершинам примыкают три грани, а к другим – четыре, что нарушает условие (ii).

ПЯТЬ ПРАВИЛЬНЫХ МНОГОГРАННИКОВ

Название

Запись Шлефли

N 0
(число вершин)

N 1
(число ребер)

N 2
(число граней)

Тетраэдр
Куб
Октаэдр
Икосаэдр
Додекаэдр

Свойства правильных многогранников.

Вершины любого правильного многогранника лежат на сфере (что вряд ли вызовет удивление, если вспомнить, что вершины любого правильного многоугольника лежат на окружности). Помимо этой сферы, называемой «описанной сферой», имеются еще две важные сферы. Одна из них, «срединная сфера», проходит через середины всех ребер, а другая, «вписанная сфера», касается всех граней в их центрах. Все три сферы имеют общий центр, который называется центром многогранника.

Двойственные многогранники.

Рассмотрим правильный многогранник {p , q } и его срединную сферу S . Средняя точка каждого ребра касается сферы. Заменяя каждое ребро отрезком перпендикулярной прямой, касательной к S в той же точке, мы получим N 1 ребер многогранника, двойственного многограннику {p , q }. Нетрудно показать, что гранями двойственного многогранника служат правильные q -угольники и что к каждой вершине примыкают р граней. Следовательно, многограннику {p , q } двойствен правильный многогранник {q , p }. Многограннику {3, 3} двойствен другой многогранник {3, 3}, конгруэнтный исходному (поэтому {3, 3} называется самодвойственным многогранником), многограннику {4, 3} двойствен многогранник {3, 4}, а многограннику {5, 3} – многогранник {3, 5}. На рис. 3 многогранники {4, 3} и {3, 4} показаны в положении двойственности друг другу. Кроме того, каждой вершине, каждому ребру и каждой грани многогранника {p , q } соответствует единственная грань, единственное ребро и единственная вершина двойственного многогранника {q , p }. Следовательно, если {p , q } имеет N 0 вершин, N 1 ребер и N 2 граней, то {q , p } имеет N 2 вершин, N 1 ребер и N 0 граней.

Так как каждая из N 2 граней правильного многогранника {p , q } ограничена р ребрами и каждое ребро является общим ровно для двух граней, то всего имеется pN 2 /2 ребер, поэтому N 1 = pN 2 /2. У двойственного многогранника {q , p } ребер также N 1 и N 0 граней, поэтому N 1 = qN 0 /2. Таким образом, числа N 0 , N 1 и N 2 для любого правильного многогранника {p , q } связаны соотношением

Симметрия.

Основной интерес к правильным многогранникам вызывает большое число симметрий, которыми они обладают. Под симметрией (или преобразованием симметрии) многогранника мы понимаем такое его движение как твердого тела в пространстве (например, поворот вокруг некоторой прямой, отражение относительно некоторой плоскости и т.д.), которое оставляет неизменными множества вершин, ребер и граней многогранника. Иначе говоря, под действием преобразования симметрии вершина, ребро или грань либо сохраняет свое исходное положение, либо переводится в исходное положение другой вершины, другого ребра или другой грани.

Существует одна симметрия, которая свойственна всем многогранникам. Речь идет о тождественном преобразовании, оставляющем любую точку в исходном положении. С менее тривиальным примером симметрии мы встречаемся в случае прямой правильной р -угольной призмы. Пусть l – прямая, соединяющая центры оснований. Поворот вокруг l на любое целое кратное угла 360/р градусов является симметрией. Пусть, далее, p – плоскость, проходящая посредине между основаниями параллельно им. Отражение относительно плоскости p (движение, переводящее любую точку P в точку P ў , такую, что p пересекает отрезок PP ў под прямым углом и делит его пополам) – еще одна симметрия. Комбинируя отражение относительно плоскости p с поворотом вокруг прямой l , мы получим еще одну симметрию.

Любую симметрию многогранника можно представить в виде произведения отражений. Под произведением нескольких движений многогранника как твердого тела здесь понимается выполнение отдельных движений в определенном заранее установленном порядке. Например, упоминавшийся выше поворот на угол 360/р градусов вокруг прямой l есть произведение отражений относительно любых двух плоскостей, содержащих l и образующих относительно друг друга угол в 180/р градусов. Симметрия, являющаяся произведением четного числа отражений, называется прямой, в противном случае – обратной. Таким образом, любой поворот вокруг прямой – прямая симметрия. Любое отражение есть обратная симметрия.

Рассмотрим подробнее симметрии тетраэдра, т.е. правильного многогранника {3, 3}. Любая прямая, проходящая через любую вершину и центр тетраэдра, проходит через центр противоположной грани. Поворот на 120 или 240 градусов вокруг этой прямой принадлежит к числу симметрий тетраэдра. Так как у тетраэдра 4 вершины (и 4 грани), то мы получим всего 8 прямых симметрий. Любая прямая, проходящая через центр и середину ребра тетраэдра проходит через середину противоположного ребра. Поворот на 180 градусов (полуоборот) вокруг такой прямой также является симметрией. Так как у тетраэдра 3 пары ребер, мы получаем еще 3 прямые симметрии. Следовательно, общее число прямых симметрий, включая тождественное преобразование, доходит до 12. Можно показать, что других прямых симметрий не существует и что имеется 12 обратных симметрий. Таким образом, тетраэдр допускает всего 24 симметрии. Для наглядности полезно построить картонную модель правильного тетраэдра и убедиться, что тетраэдр действительно обладает 24 симметриями. Развертки, которые можно вырезать из тонкого картона и, сложив, склеить из них пять правильных многогранников, приведены на рис. 4.

Прямые симметрии остальных правильных многогранников можно описать не по отдельности, а все вместе. Условимся понимать под {p , q } любой правильный многогранник, кроме {3, 3}. Прямая, проходящая через центр {p , q } и любую вершину, проходит через противоположную вершину, и любой поворот на целое кратное 360/q градусов вокруг этой прямой является симметрией. Следовательно, для каждой такой прямой существуют, включая тождественное преобразование, (q – 1) различных симметрий. Каждая такая прямая соединяет две из N 0 вершин; следовательно, всего таких прямых – N 0 /2, что дает (q – 1) > N 0 /2 симметрий. Кроме того, прямая, проходящая через центр многогранника {p , q } и центр любой грани, проходит через центр противоположной грани, и любой поворот вокруг такой прямой на целое кратное 360/р градусов является симметрией. Так как общее число таких линий равно N 2 /2, где N 2 – число граней многогранника {p , q }, мы получаем (p – 1) N 2 /2 различных симметрий, включая тождественное преобразование. Наконец, прямая, проходящая через центр и середину любого ребра многогранника {p , q }, проходит через середину противоположного ребра, и симметрией является полуоборот вокруг этой прямой. Поскольку имеется N 1 /2 таких прямых, где N 1 – число ребер многогранника {p , q }, мы получаем еще N 1 /2 симметрий. С учетом тождественного преобразования получаем

прямых симметрий. Других прямых симметрий нет, и имеется столько же обратных симметрий.

Хотя формула (3) была получена не для многогранника {3, 3}, нетрудно проверить, что она верна и для него. Таким образом, многогранник {3, 3} обладает 12 прямыми симметриями, многогранники {4, 3} и {3, 4} имеют по 24 симметрии, а многогранники {5, 3} и {3, 5} – по 60 симметрий.

Читатели, знакомые с абстрактной алгеброй, поймут, что симметрии многогранника {p , q } образуют группу относительно определенного выше «умножения». В этой группе прямые симметрии образуют подгруппу индекса 2, а обратные симметрии группу не образуют, так как нарушают свойство замкнутости и не содержат тождественного преобразования (единичного элемента группы). Обычно о группе прямых симметрий говорят как о группе многогранника, а полную группу симметрий называют его расширенной группой. Из рассмотренных выше свойств двойственных многогранников ясно, что любой правильный многогранник и двойственный ему многогранник имеют одну и ту же группу. Группа тетраэдра называется тетраэдрической группой, группа куба и октаэдра называется октаэдрической группой, а группа додекаэдра и икосаэдра – икосаэдрической группой. Они изоморфны знакопеременной группе А 4 из четырех символов, симметрической группе S 4 из четырех символов и знакопеременной группе А 5 из пяти символов соответственно .

ФОРМУЛА ЭЙЛЕРА

Рассматривая таблицу, можно заметить интересное соотношение между числом вершин N 0 , числом ребер N 1 и числом граней N 2 любого выпуклого правильного многогранника {p , q }. Речь идет о соотношении

Подставляя полученные выражения в формулы (3) и (4), получаем, что число прямых симметрий многогранника {p , q } равно

Это число можно записать также в одной из эквивалентных форм: qN 0 , 2N 1 или pN 2 .

Область применения формулы Эйлера.

Значимость формулы Эйлера усиливается тем, что она применима не только к платоновым телам, но и к любому многограннику, гомеоморфному сфере (см . ТОПОЛОГИЯ) . Это утверждение доказывается следующим образом.

Пусть P – любой многогранник, гомеоморфный сфере, с N 0 вершинами, N 1 ребрами и N 2 гранями; пусть c = N 0 – N 1 + N 2 – эйлерова характеристика многогранника P . Требуется доказать, что c = 2. Так как Р гомеоморфен сфере, мы можем удалить одну грань и превратить остальные в некоторую конфигурацию на плоскости (например, на рис. 5,а и 5,б вы видите призму, у которой удалена передняя плоскость). «Плоскостная конфигурация» представляет собой сеть точек и прямолинейных отрезков, называемых соответственно «вершинами» и «ребрами», при этом вершины служат концами ребер. Вершины и ребра рассматриваемой нами конфигурации мы считаем смещенными и деформированными вершинами и ребрами многогранника. Таким образом, эта конфигурация имеет N 0 вершин и N 1 ребер. Остальные N 2 – 1 граней многогранника деформируются в N 2 – 1 непересекающихся областей на плоскости, определяемой конфигурацией. Назовем эти области «гранями» конфигурации. Вершины, ребра и грани конфигурации и определяют эйлерову характеристику, которая в данном случае равна c – 1.

Теперь мы проведем сплющивание так, что если удаленная грань была р -угольником, то все N 2 – 1 граней конфигурации заполнят внутренность р -угольника. Пусть А – некоторая вершина внутри р -угольника. Предположим, что в А сходятся r ребер. Если удалить А и все r сходящихся в ней ребер, то число вершин уменьшится на 1, ребер – на r , граней – на r – 1 (см . рис. 5,б и 5,в ). У новой конфигурации 0 = N 0 – 1 вершин, 1 = N 1 – r ребер и 2 = N 2 – 1 – (r – 1) граней; следовательно,

Таким образом, удаление одной внутренней вершины и сходящихся в ней ребер не меняет эйлеровой характеристики конфигурации. Поэтому, удалив все внутренние вершины и сходящиеся в них ребра, мы тем самым сведем конфигурацию к р -угольнику и его внутренности (рис. 5,г ). Но эйлерова характеристика останется по-прежнему равной c – 1, а так как конфигурация имеет р вершин, р ребер и 1 грань, мы получаем

Таким образом, c = 2, что и требовалось доказать.

Далее можно доказать, что если эйлерова характеристика многогранника равна 2, то многогранник гомеоморфен сфере. Иначе говоря, мы можем обобщить полученный выше результат, показав, что многогранник гомеоморфен сфере в том и только в том случае, если его эйлерова характеристика равна 2.

Обобщенная формула Эйлера.

Для классификации других многогранников используется обобщенная формула Эйлера. Если у некоторого многогранника 16 вершин, 32 ребра и 16 граней, то его эйлерова характеристика равна 16 – 32 + 16 = 0. Это позволяет утверждать, что данный многогранник принадлежит классу многогранников, гомеоморфных тору. Отличительной особенностью этого класса является эйлерова характеристика, равная нулю. Более общо, пусть Р – многогранник с N 0 вершинами, N 1 ребрами и N 2 гранями. Говорят, что данный многогранник гомеоморфен поверхности рода n в том и только в том случае, если

Наконец, следует заметить, что ситуация существенно усложняется, если смягчить прежнее ограничение, согласно которому никакие две грани многогранника не должны пересекаться. Например, появляется возможность существования двух негомеоморфных многогранников с одной и той же эйлеровой характеристикой. Их следует различать по другим топологическим свойствам.

Муниципальное Образовательное Учреждение

Гимназия № 26

Геометрия

Основные виды многогранников и их свойства

Выполнила:

Ученица 9-1 класса

Байсакова Ляззат

Преподаватель:

Сысоева Елена Алексеевна

Челябинск


Введение

До настоящего времени в курсе геометрии мы занимались планиметрией - изучали свойства плоских геометрических фигур, то есть фигур, полностью расположенных в плоскости. Но большинство окружающих нас предметов не являются полностью плоскими, они расположены в пространстве. Раздел геометрии, в котором изучают свойства фигур в пространстве, называется стереометрией ( от др. греч. στερεός, "стереос" - "твёрдый, пространственный" и μετρέω - "измеряю").

Основными фигурами в пространстве являются точка , прямая и плоскость . Наряду с данными простейшими фигурами в стереометрии рассматриваются геометрические тела и их поверхности. При изучении геометрических тел, пользуются изображениями на чертеже.

Рисунок 1 Рисунок 2

На рисунке 1 изображена пирамида, на рисунке 2 - куб. Данные геометрические тела называются многогранниками. Рассмотрим некоторые виды и свойства многогранников.

Многогранная поверхность. Многогранник

Многогранной поверхностью называют объединение конечного числа плоских многоугольников такое, что каждая сторона любого из многоугольников является в то же время стороной другого (но только одного) многоугольника, называемого смежным с первым многоугольником.

От любого из многоугольников, составляющих многогранную поверхность, можно дойти до любого другого, двигаясь по смежным многоугольникам.

Многоугольники, составляющие многогранную поверхность, называются ее гранями; стороны многоугольников называются ребрами, а вершины - вершинами многогранной поверхности.

На рис.1 изображены объединения многоугольников, удовлетворяющие указанным требованиям и являющиеся многогранными поверхностями. На рис.2 изображены фигуры, не являющиеся многогранными поверхностями.

Многогранная поверхность делит пространство на две части - внутреннюю область многогранной поверхности и внешнюю область. Из двух областей внешней будет та, в которой можно провести прямые, целиком принадлежащие области.

5 Объединение многогранной поверхности и ее внутренней области называют многогранником. При этом многогранную поверхность и ее внутреннюю область называют соответственно поверхностью и внутренней областью многогранника. Грани, ребра и вершины поверхности многогранника называют соответственно гранями, ребрами и вершинами многогранника.

Пирамида

Многогранник, одна из граней которого - произвольный многогранник, а остальные грани - треугольники, имеющие одну общую вершину, называется пирамидой.

Многоугольник называется основанием пирамиды, а остальные грани (треугольники) называются боковыми гранями пирамиды.

Различают треугольные, четырехугольные, пятиугольные и т.д. пирамиды в зависимости от вида многоугольника, лежащего в основании пирамиды.

Треугольную пирамиду также называют тетраэдром. На рис.1 изображена четырехугольная пирамида SABCD с основанием ABCD и боковыми гранями SAB, SBC, SCD, SAD.

Стороны граней пирамиды называются ребрами пирамиды. Ребра, принадлежащие основанию пирамиды, называют ребрами основания, а все остальные ребра - боковыми ребрами. Общая вершина всех треугольников (боковых граней) называется вершиной пирамиды (на рис.1 точка S - вершина пирамиды, отрезки SA, SB, SC, SD - боковые ребра, отрезки АВ, ВС, CD, AD - ребра основания).

Высотой пирамиды называется отрезок перпендикуляра, проведенного из вершины пирамиды S к плоскости основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра). На рис.1 SO - высота пирамиды.

Правильная пирамида. Пирамида называется правильной, если основанием пирамиды является правильный многоугольник, а ортогональная проекция вершины на плоскость основания совпадает с центром многоугольника, лежащего в основании пирамиды.

Все боковые ребра правильной пирамиды равны между собой; все боковые грани - равные равнобедренные треугольники.

Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой этой пирамиды. На рис.2 SN - апофема. Все апофемы правильной пирамиды равны между собой.

Призма

Многогранник, две грани которого - равные n -угольники, лежащие в параллельных плоскостях, а остальные n граней - параллелограммы, называетсяn -угольной призмой.

многогранник пирамида призма параллелепипед

Пару равных n -угольников называют основаниями призмы. Остальные грани призмы называют ее боковыми гранями, а их объединение - боковой поверхностью призмы. На рис.1 изображена пятиугольная призма.

Стороны граней призмы называют ребрами, а концы ребер - вершинами призмы. Ребра, не принадлежащие основанию призмы, называют боковыми ребрами.

Призму, боковые ребра которой перпендикулярны плоскостям оснований, называют прямой призмой. В противном случае призма называется наклонной.

Отрезок перпендикуляра к плоскостям оснований призмы, концы которого принадлежат этим плоскостям, называют высотой призмы.

Прямая призма, основанием которой является правильный многоугольник, называется правильной призмой.

Параллелепипед

Параллелепипед - шестигранник, противоположные грани которого попарно параллельны. Параллелепипед имеет 8 вершин, 12 рёбер; его грани представляют собой попарно равные параллелограммы.

Параллелепипед называется прямым, если его боковые ребра перпендикулярны к плоскости основания (в этом случае 4 боковые грани - прямоугольники); прямоугольным, если этот параллелепипед прямой и основанием служит прямоугольник (следовательно, 6 граней - прямоугольники);

Параллелепипед , все грани которого квадраты, называется кубом.

Объём Параллелепипед равен произведению площади его основания на высоту.

Объем тела

Каждый многогранник имеет объем, который можно измерить с помощью выбранной единицы измерения объемов. За единицу измерения объемов принимают куб, ребро которого равно единице измерения отрезков. Куб с ребром 1 см называется кубическим сантиметром . Аналогично определяется кубический метр и кубический миллиметр , и т.д.

В процессе измерения объемов при выбранной единице измерения объем тела выражается положительным числом, которое показывает, сколько единиц измерения объемов и ее частей укладывается в этом теле. Число, выражающее объем тела, зависит от выбора единицы измерения объемов. Поэтому единица измерения объемов указывается после этого числа.

Основные свойства объемов:

1. Равные тела имеют равные объемы.

2. Если тело составлено из нескольних тел, то его объем равен сумме объемов этих тел.

Для нахождения объемов тел в ряде случаев удобно пользоваться теоремой, получившей название принцип Кавальери .

Принцип Кавальери состоит в следующем: если при пересечении двух тел любой плоскостью, параллельной некоторой заданной плоскости, получаются сечения равной площади, то объёмы тел равны между собой.

Заключение

Итак, многогранники изучает раздел геометрии под названием стереометрия. Многогранники бывают разных видов (пирамида, призма и т.д.) и имеют разные свойства. Также, следует отметить, что многогранники в отличие от плоских фигур имеют объем и располагаются в пространстве.

Большинство окружающих нас предметов находятся в пространстве, и изучение многогранников помогает нам составить представление об окружающей нас реальности с точки зрения геометрии.

Список используемой литературы

1. Геометрия. Учебник для 7-9 классов.

3. Википедия

Многогранники не только занимают видное место в геометрии, но и встречаются в повседневной жизни каждого человека. Не говоря уже об искусственно созданных предметах обихода в виде различных многоугольников, начиная со спичечного коробка и заканчивая архитектурными элементами, в природе также встречаются кристаллы в форме куба (соль), призмы (хрусталь), пирамиды (шеелит), октаэдра (алмаз) и т. д.

Понятие многогранника, виды многогранников в геометрии

Геометрия как наука содержит раздел стереометрию, изучающую характеристики и свойства объёмных тела, стороны которых в трёхмерном пространстве образованы ограниченными плоскостями (гранями), носят название "многогранники". Виды многогранников насчитывают не один десяток представителей, отличающихся количеством и формой граней.

Тем не менее у всех многогранников есть общие свойства:

  1. Все они имеют 3 неотъемлемых компонента: грань (поверхность многоугольника), вершина (углы, образовавшиеся в местах соединения граней), ребро (сторона фигуры или отрезок, образованный в месте стыка двух граней).
  2. Каждое ребро многоугольника соединяет две, и только две грани, которые по отношению друг к другу являются смежными.
  3. Выпуклость означает, что тело полностью расположено только по одну сторону плоскости, на которой лежит одна из граней. Правило применимо ко всем граням многогранника. Такие геометрические фигуры в стереометрии называют термином выпуклые многогранники. Исключение составляют звёздчатые многогранники, которые являются производными правильных многогранных геометрических тел.

Многогранники можно условно разделить на:

  1. Виды выпуклых многогранников, состоящих из следующих классов: обычные или классические (призма, пирамида, параллелепипед), правильные (также называемые Платоновыми телами), полуправильные (второе название - Архимедовы тела).
  2. Невыпуклые многогранники (звёздчатые).

Призма и её свойства

Стереометрия как раздел геометрии изучает свойства трёхмерных фигур, виды многогранников (призма в их числе). Призмой называют геометрическое тело, которое имеет обязательно две совершенно одинаковые грани (их также называют основаниями), лежащие в параллельных плоскостях, и n-ое число боковых граней в виде параллелограммов. В свою очередь, призма имеет также несколько разновидностей, в числе которых такие виды многогранников, как:

  1. Параллелепипед - образуется, если в основании лежит параллелограмм - многоугольник с 2 парами равных противоположных углов и двумя парами конгруэнтных противоположных сторон.
  2. имеет перпендикулярные к основанию рёбра.
  3. характеризуется наличием непрямых углов (отличных от 90) между гранями и основанием.
  4. Правильная призма характеризуется основаниями в виде с равными боковыми гранями.

Основные свойства призмы:

  • Конгруэнтные основания.
  • Все рёбра призмы равны и параллельны по отношению друг к другу.
  • Все боковые грани имеют форму параллелограмма.

Пирамида

Пирамидой называют геометрическое тело, которое состоит из одного основания и из n-го числа треугольных граней, соединяющихся в одной точке - вершине. Следует отметить, что если боковые грани пирамиды представлены обязательно треугольниками, то в основании может быть как треугольный многоугольник, так и четырёхугольник, и пятиугольник, и так до бесконечности. При этом название пирамиды будет соответствовать многоугольнику в основании. Например, если в основании пирамиды лежит треугольник - это , четырёхугольник - четырёхугольная, и т. д.

Пирамиды - это конусоподобные многогранники. Виды многогранников этой группы, кроме вышеперечисленных, включают также следующих представителей:

  1. имеет в основании правильный многоугольник, и высота ее проектируется в центр окружности, вписанной в основание или описанной вокруг него.
  2. Прямоугольная пирамида образуется тогда, когда одно из боковых рёбер пересекается с основанием под прямым углом. В таком случае это ребро справедливо также назвать высотой пирамиды.

Свойства пирамиды:

  • В случае если все боковые рёбра пирамиды конгруэнтны (одинаковой высоты), то все они пересекаются с основанием под одним углом, а вокруг основания можно прочертить окружность с центром, совпадающим с проекцией вершины пирамиды.
  • Если в основании пирамиды лежит правильный многоугольник, то все боковые рёбра конгруэнтны, а грани являются равнобедренными треугольниками.

Правильный многогранник: виды и свойства многогранников

В стереометрии особое место занимают геометрические тела с абсолютно равными между собой гранями, в вершинах которых соединяется одинаковое количество рёбер. Эти тела получили название Платоновы тела, или правильные многогранники. Виды многогранников с такими свойствами насчитывают всего пять фигур:

  1. Тетраэдр.
  2. Гексаэдр.
  3. Октаэдр.
  4. Додекаэдр.
  5. Икосаэдр.

Своим названием правильные многогранники обязаны древнегреческому философу Платону, описавшему эти геометрические тела в своих трудах и связавшему их с природными стихиями: земли, воды, огня, воздуха. Пятой фигуре присуждали сходство со строением Вселенной. По его мнению, атомы природных стихий по форме напоминают виды правильных многогранников. Благодаря своему самому захватывающему свойству - симметричности, эти геометрические тела представляли большой интерес не только для древних математиков и философов, но и для архитекторов, художников и скульпторов всех времён. Наличие всего лишь 5 видов многогранников с абсолютной симметрией считалось фундаментальной находкой, им даже присуждали связь с божественным началом.

Гексаэдр и его свойства

В форме шестигранника преемники Платона предполагали сходство со строением атомов земли. Конечно же, в настоящее время эта гипотеза полностью опровергнута, что, однако, не мешает фигурам и в современности привлекать умы известных деятелей своей эстетичностью.

В геометрии гексаэдр, он же куб, считается частным случаем параллелепипеда, который, в свою очередь, является разновидностью призмы. Соответственно и свойства куба связаны со с той лишь разницей, что все грани и углы куба равны между собой. Из этого вытекают следующие свойства:

  1. Все рёбра куба конгруэнтны и лежат в параллельных плоскостях по отношению друг к другу.
  2. Все грани - конгруэнтные квадраты (всего в кубе их 6), любой из которых может быть принят за основание.
  3. Все межгранные углы равны 90.
  4. Из каждой вершины исходит равное количество рёбер, а именно 3.
  5. Куб имеет 9 которые все пересекаются в точке пересечения диагоналей гексаэдра, именуемой центром симметрии.

Тетраэдр

Тетраэдр - это четырёхгранник с равными гранями в форме треугольников, каждая из вершин которых является точкой соединения трёх граней.

Свойства правильного тетраэдра:

  1. Все грани тетраэда - это из чего следует, что все грани четырёхгранника конгруэнтны.
  2. Так как основание представлено правильной геометрической фигурой, то есть имеет равные стороны, то и грани тетраэдра сходятся под одинаковым углом, то есть все углы равны.
  3. Сумма плоских углов при каждой из вершин равняется 180, так как все углы равны, то любой угол правильного четырёхгранника составляет 60.
  4. Каждая из вершин проецируется в точку пересечения высот противоположной (ортоцентр) грани.

Октаэдр и его свойства

Описывая виды правильных многогранников, нельзя не отметить такой объект, как октаэдр, который визуально можно представить в виде двух склеенных основаниями четырёхугольных правильных пирамид.

Свойства октаэдра:

  1. Само название геометрического тела подсказывает количество его граней. Восьмигранник состоит из 8 конгруэнтных равносторонних треугольников, в каждой из вершин которого сходится равное количество граней, а именно 4.
  2. Так как все грани октаэдра равны, равны и его межгранные углы, каждый из которых равняется 60, а сумма плоских углов любой из вершин составляет, таким образом, 240.

Додекаэдр

Если представить, что все грани геометрического тела представляют собой правильный пятиугольник, то получится додекаэдр - фигура из 12 многоугольников.

Свойства додекаэдра:

  1. В каждой вершине пересекаются по три грани.
  2. Все грани равны и имеют одинаковую длину рёбер, а также равную площадь.
  3. У додекаэдра 15 осей и плоскостей симметрии, причём любая из них проходит через вершину грани и середину противоположного ей ребра.

Икосаэдр

Не менее интересная, чем додекаэдр, фигура икосаэдр представляет собой объёмное геометрическое тело с 20 равными гранями. Среди свойств правильного двадцатигранника можно отметить следующие:

  1. Все грани икосаэдра - равнобедренные треугольники.
  2. В каждой вершине многогранника сходится пять граней, и сумма смежных углов вершины составляет 300.
  3. Икосаэдр имеет так же, как и додекаэдр, 15 осей и плоскостей симметрии, проходящих через середины противоположных граней.

Полуправильные многоугольники

Кроме Платоновых тел, в группу выпуклых многогранников входят также Архимедовы тела, которые представляют собой усечённые правильные многогранники. Виды многогранников данной группы обладают следующими свойствами:

  1. Геометрические тела имеют попарно равные грани нескольких типов, например, усечённый тетраэдр имеет так же, как и правильный тетраэдр, 8 граней, но в случае Архимедова тела 4 грани будут треугольной формы и 4 - шестиугольной.
  2. Все углы одной вершины конгруэнтны.

Звёздчатые многогранники

Представители необъёмных видов геометрических тел - звёздчатые многогранники, грани которых пересекаются друг с другом. Они могут быть образованы путём слияния двух правильных трёхмерных тел либо в результате продолжения их граней.

Таким образом, известны такие звёздчатые многогранники, как: звёздчатые формы октаэдра, додекаэдра, икосаэдра, кубооктаэдра, икосододекаэдра.

Цель урока:

  1. Ввести понятие правильных многогранников.
  2. Рассмотреть виды правильных многогранников.
  3. Решение задач.
  4. Привить интерес к предмету, научить видеть прекрасное в геометрических телах, развитие пространственного воображения.
  5. Межпредметные связи.

Наглядность: таблицы, модели.

Ход урока

I. Организационный момент. Сообщить тему урока, сформулировать цели урока.

II. Изучение нового материала/

Есть в школьной геометрии особые темы, которые ждешь с нетерпением, предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести “Правильные многогранники”. Здесь не только открывается удивительный мир геометрических тел, обладающих неповторимыми свойствами, но и интересные научные гипотезы. И тогда урок геометрии становится своеобразным исследованием неожиданных сторон привычного школьного предмета.

Ни одни геометрические тела не обладают таким совершенством и красотой, как правильные многогранники. “Правильных многогранников вызывающе мало, – написал когда-то Л. Кэролл, – но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук”.

Определение правильного многогранника.

Многогранник называется правильным, если:

  1. он выпуклый;
  2. все его грани – равные друг другу правильные многоугольники;
  3. в каждой его вершине сходится одинаковое число ребер;
  4. все его двугранные углы равны.

Теорема: Существует пять различных (с точностью до подобия) типов правильных многогранников: правильный тетраэдр, правильный гексаэдр (куб), правильный октаэдр, правильный додекаэдр и правильный икосаэдр.

Таблица 1. Некоторые свойства правильных многогранников приведены в следующей таблице.

Вид грани Плоский угол при вершине Вид многогранного угла при вершине Сумма плоских углов при вершине В Р Г Название многогранника
Правильный треугольник 60º 3-гранный 180º 4 6 4 Правильный тетраэдр
Правильный треугольник 60º 4-гранный 240º 6 12 8 Правильный октаэдр
Правильный треугольник 60º 5-гранный 300º 12 30 20 Правильный икосаэдр
Квадрат 90º 3-гранный 270º 8 12 6 Правильный гексаэдр (куб)
Правильный треугольник 108º 3-гранный 324º 20 30 12 Правильный додекаэдр

Рассмотрим виды многогранников:

Правильный тетраэдр

<Рис. 1>

Правильный октаэдр


<Рис. 2>

Правильный икосаэдр


<Рис. 3>

Правильный гексаэдр (куб)


<Рис. 4>

Правильный додекаэдр


<Рис. 5>

Таблица 2. Формулы для нахождения объемов правильных многогранников.

Вид многогранника Объем многогранника
Правильный тетраэдр
Правильный октаэдр
Правильный икосаэдр
Правильный гексаэдр (куб)
Правильный додекаэдр

“Платоновые тела”.

Куб и октаэдр дуальны, т.е. получаются друг из друга, если центры тяжести граней одного принять за вершины другого и обратно. Аналогично дуальны додекаэдр и икосаэдр. Тетраэдр дуален сам себе. Правильный додекаэдр получается из куба построением “крыш” на его гранях (способ Евклида), вершинами тетраэдра являются любые четыре вершины куба, попарно не смежные по ребру. Так получаются из куба все остальные правильные многогранники. Сам факт существования всего пяти действительно правильных многогранников удивителен – ведь правильных многоугольников на плоскости бесконечно много!

Все правильные многогранники были известны еще в Древней Греции, и им посвящена заключительная, XII книга знаменитых начал Евклида. Эти многогранники часто называют так же платоновыми телами в идеалистической картине мира, данной великим древнегреческим мыслителем Платоном. Четыре из них олицетворяли четыре стихии: тетраэдр-огонь, куб-землю, икосаэдр-воду и октаэдр-воздух; пятый же многогранник, додекаэдр, символизировал все мироздание. Его по латыни стали называть quinta essentia (“пятая сущность”).

Придумать правильный тетраэдр, куб, октаэдр, по-видимому, было не трудно, тем более что эти формы имеют природные кристаллы, например: куб – монокристалл поваренной соли (NaCl), октаэдр – монокристалл алюмокалиевых квасцов ((KAlSO 4) 2 ·l2H 2 O). Существует предположение, что форму додекаэдра древние греки получили, рассматривая кристаллы пирита (сернистого колчедана FeS). Имея же додекаэдр нетрудно построить и икосаэдр: его вершинами будут центры 12 граней додекаэдра.

Где еще можно увидеть эти удивительные тела?

В очень красивой книге немецкого биолога начала нашего века Э. Геккеля “Красота форм в природе” можно прочитать такие строки: “Природа вскармливает на своем лоне неисчерпаемое количество удивительных созданий, которые по красоте и разнообразию далеко превосходят все созданные искусством человека формы”. Создания природы, приведенные в этой книге, красивы и симметричны. Это неотделимое свойство природной гармонии. Но здесь видны одноклеточные организмы – феодарии, форма которых точно передает икосаэдр. Чем же вызвана эта природная геометризация? Может быть, тем, что из всех многогранников с таким же количеством граней именно икосаэдр имеет наибольший объем и наименьшую площадь поверхности. Это геометрическое свойство помогает морскому микроорганизму преодолевать давление водной толщи.

Интересно и то, что именно икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет по теми же углами, что и поток атомов на вирус. Оказалось, что свойства, о которых говорилось выше, позволяют экономить генетическую информацию. Правильные многогранники – самые выгодные фигуры. И природа этим широко пользуется. Правильные многогранники определяют форму кристаллических решеток некоторых химических веществ. Следующая задача проиллюстрирует эту мысль.

Задача. Модель молекулы метана CH 4 имеет форму правильного тетраэдра, в четырех вершинах которого находятся атомы водорода, а в центре – атом углерода. Определить угол связи между двумя CH связями.


<Рис. 6>

Решение. Так как правильный тетраэдр имеет шесть равных ребер, то можно подобрать такой куб, чтобы диагонали его граней были ребрами правильного тетраэдра. Центр куба является и центром тетраэдра, ведь четыре вершины тетраэдра являются и вершинами куба, а описываемая около них сфера однозначно определяется четырьмя точками, не лежащими в одной плоскости.

Треугольник АОС – равнобедренный. Отсюда а – сторона куба, d – длина диагонали боковой грани или ребро тетраэдра. Итак, а = 54, 73561 0 и j = 109,47 0

Задача. В кубе из одной вершины (D) проведены диагонали граней DA, DB и DC и концы их соединены прямыми. Доказать, что многогранник DABC, образованный четырьмя плоскостями, проходящими через эти прямые, – правильный тетраэдр.


<Рис. 7>

Задача. Ребро куба равно a. Вычислить поверхность вписанного в него правильного октаэдра. Найти ее отношение к поверхности вписанного в тот же куб правильного тетраэдра.


<Рис. 8>

Обобщение понятия многогранника.

Многогранник – совокупность конечного числа плоских многоугольников такая, что:

  1. каждая сторона любого из многоугольников есть одновременно сторона другого (но только одного (называемого смежным с первым) по этой стороне);
  2. от любого из многоугольников составляющих многогранник, можно дойти до любого из них, переходя к смежному с ним, а от этого, в свою очередь, к смежному с ним и т.д.

Эти многоугольники называются гранями, их стороны – ребрами, а их вершины – вершинами многогранника.

Приведенное определение многогранника получает различный смысл в зависимости от того, как определить многоугольник:

– если под многоугольником понимают плоские замкнуты ломаные (хотя бы и само пересекающиеся), то приходят к данному определению многогранника;

– если под многоугольником понимать часть плоскости, ограниченной ломанными, то с этой точки зрения под многогранником понимают поверхность, составленную из многоугольных кусков. Если эта поверхность сама себя не пересекает, то она есть полная поверхность некоторого геометрического тела, которое так же называют многогранником. От сюда возникает третья точка зрения на многогранники как на геометрические тела, при чем допускается также существование у этих тел “дырок”, ограниченных конечным числом плоских граней.

Простейшими примерами многогранников являются призмы и пирамиды.

Многогранник называется n- угольной пирамидой, если он имеет одной своей гранью (основанием) какой-либо n- угольник, а остальные грани – треугольники с общей вершиной, не лежащей в плоскости основания. Треугольная пирамида называется также тетраэдром.

Многогранник называется n -угольной призмой, если он имеет двумя своими гранями (основаниями) равные n -угольники (не лежащие в одной плоскости), получающиеся друг из друга параллельным переносом, а остальные грани – параллелограммы, противоположными сторонами которых являются соответственные стороны оснований.

Для всякого многогранника нулевого рода эйлерова характеристика (число вершин минус число ребер плюс число граней) равна двум; символически: В – Р + Г = 2 (теорема Эйлера). Для многогранника рода p справедливо соотношение В – Р + Г = 2 – 2p .

Выпуклым многогранником называется такой многогранник, который лежит по одну сторону от плоскости любой его грани. Наиболее важны следующие выпуклые многогранники:


<Рис. 9>

  1. правильные многогранники (тела Платона) – такие выпуклые многогранники, все грани которых одинаковые правильные многоугольники и все многогранные углы при вершинах правильные и равные <Рис. 9, № 1-5>;
  2. изогоны и изоэдры – выпуклые многогранники, все многогранные углы которых равны (изогоны) или равные все грани (изоэдры); причем группа поворотов (с отражениями) изогона (изоэдра) вокруг центра тяжести переводит любую его вершину (грань) в любую другую его вершину (грань). Полученные так многогранники называются полуправильными многогранниками (телами Архимеда) <Рис. 9, № 10-25>;
  3. параллелоэдры (выпуклые) – многогранники, рассматриваемые как тела, параллельным пересечением которых можно заполнить все бесконечное пространство так, чтобы они не входили друг в друга и не оставляли пустот между собой, т.е. образовывали разбиение пространства <Рис. 9, № 26-30>;
  4. Если под многоугольником понимать плоские замкнутые ломаные (хотя бы и самопересекающиеся), то можно указать еще 4 невыпуклых (звездчатых) правильных многогранников (тела Пуансо). В этих многогранниках либо грани пересекают друг друга, либо грани – самопересекающиеся многоугольники <Рис. 9, № 6-9>.

III. Задание на дом.

IV. Решение задач № 279, № 281.

V. Подведение итогов.

Список использованной литературы:

  1. “Математическая энциклопедия”, под редакцией И. М. Виноградова, издательство “Советская энциклопедия”, Москва, 1985 г. Том 4 стр. 552–553 Том 3, стр. 708–711.
  2. “Малая математическая энциклопедия”, Э. Фрид, И. Пастор, И. Рейман и др. издательство Академии наук Венгрии, Будапешт, 1976 г. Стр. 264–267.
  3. “Сборник задач по математики для поступающих в ВУЗы” в двух книгах, под редакцией М.И. Сканави, книга 2 – Геометрия, изд-во “Высшая школа”, Москва, 1998 г. Стр. 45–50.
  4. “Практические занятия по математике: Учебное пособие для техникумов”, издательство “Высшая школа”, Москва, 1979 г. Стр. 388–395, стр. 405.
  5. “Повторяем математику” издание 2–6, доп., Учебное пособие для поступающих в ВУЗы, издательство “Высшая школа”, Москва, 1974 г. Стр. 446–447.
  6. Энциклопедический словарь юного математика, А. П. Савин, издательство “Педагогика”, Москва, 1989 г. Стр. 197–199.
  7. “Энциклопедия для детей. Т.П. Математика”, главный редактор М. Д. Аксенова ; метод, и отв. редактор В. А. Володин, издательство “Аванта+”, Москва, 2003 г. Стр. 338–340.
  8. Геометрия, 10–11: Учебник для общеобразовательных учреждений/ Л.С. Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. – 10-е издание – М.: Просвещение, 2001. Стр. 68–71.
  9. “Квант” № 9, 11 – 1983, № 12 – 1987, № 11, 12 – 1988, № 6, 7, 8 – 1989. Научно-популярный физико-математический журнал Академии наук СССР и Академии педагогических наук СССР. Издательство “Наука”. Главная редакция физико-математической литературы. Стр. 5–9, 6–12, 7–9, 10, 4–8, 13, 16, 58.
  10. Решение задач повышенной сложности по геометрии: 11-й класс – М.: АРКТИ, 2002. Стр. 9, 19–20.

Хотя стереометрию изучают только в старших классах школы, но с кубом, правильными пирамидами и другими простыми многогранниками знаком каждый школьник. Тема «Многогранники» имеет яркие приложения, в том числе в живописи и архитектуре. Кроме этого, в ней, по образному выражению академика Александрова, сочетаются «лёд и пламень», то есть живое воображение и строгая логика. Но в школьном курсе стереометрии мало времени уделяется правильным многогранникам. А ведь у многих правильные многогранники вызывают большой интерес, но нет возможности узнать о них больше на уроке. Именно поэтому я решила рассказать обо всех правильных многогранниках, имеющих разнообразные формы, и об их интересных свойствах.

Структура правильных многогранников очень удобна для изучения множества преобразований многогранника в себя (повороты, симметрии и т. д.). Получающиеся при этом группы преобразований (их называют группами симметрии) оказались весьма интересными с точки зрения теории конечных групп. Эта же симметричность позволила создать серию головоломок в виде правильных многогранника, начавшуюся «кубиком Рубиком» и «молдавской пирамидкой».

Для составления реферата использовался Научно-популярный физико-математический журнал «Квант», из которого взята информация о том, что такое правильный многогранник, об их количестве, о построении всех правильных многогранников и описании всех поворотов, при которых многогранник совмещается со своим первоначальным положением. Из газеты «Математика» я получила интересные сведения о звёздчатых правильных многогранниках, их свойствах, открытии и их применении.

Теперь у вас есть возможность окунуться в мир правильного и великолепного, в мир прекрасного и необычайного, который привораживает наш взор.

1. Правильные многогранники

1. 1 Определение правильных многогранников.

Выпуклый многогранник называется правильным, если его гранями являются равные правильные многогранники и все многогранные углы равны.

Рассмотрим возможные правильные многогранники и, прежде всего те из них, гранями которых являются правильные треугольники. Наиболее простым таким правильным многогранником является треугольная пирамида, гранями которой являются правильные треугольники. В каждой её вершине сходится по три грани. Имея всего четыре грани, этот многогранник называется также правильным тетраэдром, или просто тетраэдром, что в переводе с греческого языка означает четырёхгранник.

Многогранник, гранями которого являются правильные треугольники и в каждой вершине сходится четыре грани, его поверхность состоит из восьми правильных треугольников, поэтому он называется октаэдром.

Многогранник, в каждой вершине которого сходиться пять правильных треугольников. Его поверхность состоит из двадцати правильных треугольников, поэтому он называется икосаэдром.

Заметим, что поскольку в вершинах выпуклого многогранника не может сходиться более пяти правильных треугольников, то других правильных многоугольников, гранями которых являются правильные треугольники, не существует.

Аналогично, поскольку в вершинах выпуклого многогранника может сходиться только три квадрата, то, кроме куба, других правильных многогранников, у которых гранями являются квадраты, не существует. Куб имеет шесть граней и поэтому также называется гексаэдром.

Многогранник, гранями которого являются правильные пятиугольники и в каждой вершине сходятся три грани. Его поверхность состоит из двенадцати правильных пятиугольников, поэтому он называется додекаэдром.

Из определения правильного многогранника следует, что правильный многогранник «совершенно симметричный»: если отметить какую-то грань Г и одну из её вершин А, то для любой другой грани Г1 и её вершины А1 можно совместить многогранник с самим собой движением в пространстве так, что грань Г совместится с Г1 и при этом вершина А попадает в точку А1.

1. 2. Историческая справка.

Пять перечисленных выше правильных многогранников, часто называемых также «телами Платона», захватили воображение математиков, мистиков и философов древности более двух тысяч лет назад. Древние греки даже установили мистическое соответствие между тетраэдром, кубом, октаэдром и икосаэдром и четырьмя природными началами – огнем, землей, воздухом и водой. Что касается пятого правильного многогранника, додекаэдра, то они рассматривали его как форму Вселенной. Эти идеи не являются одним лишь достоянием прошлого. И сейчас, спустя два тысячелетия, многих привлекает лежащее в их основе эстетическое начало.

Первые четыре многогранника были известны задолго до Платона. Археологи нашли додекаэдр, изготовленный во времена этрусской цивилизации по крайней мере за 500 лет до н. э. Но, видимо, в школе Платона додекаэдр был открыт самостоятельно. Существует легенда об ученике Платона Гиппазе, погибшем в море потому, что он разгласил тайну о «шаре с двенадцатью пятиугольниками».

Со времен Платона и Евклида хорошо известно, что существует ровно пять типов правильных многогранников.

Докажем этот факт. Пусть все грани некоторого многогранника -правильные п-угольники и k - число граней, примыкающих к вершине (оно одинаково для всех вершин). Рассмотрим вершину А нашего многогранника. Пусть M1, М2,. , Mk - концы k выходящих из неё рёбер; поскольку двугранные углы при этих рёбрах равны, AM1M2Mk - правильная пирамида: при повороте на угол 360º/k вокруг высоты АН вершина М переходит в М, вершина M1 - в М2. Mk в M1 .

Сравним равнобедренные треугольники AM1M2 и HM1M2 У них основание общее, а боковая сторона AM1 больше HM1, поэтому M1AM2

Тетраэдр 3 3 4 4 6

Куб 4 3 8 6 12

Октаэдр 3 4 6 8 12

Додекаэдр 5 3 20 12 30

Икосаэдр 3 5 12 20 30

1. 3. Построение правильных многогранников.

Все соответствующие многогранники можно построить, взяв за основу куб.

Чтобы получить правильный тетраэдр, достаточно взять четыре несмежные вершины куба и отрезать от него пирамидки четырьмя плоскостями, каждая из которых проходит через три из взятых вершин

Такой тетраэдр можно вписать в куб двумя способами.

Пересечение двух таких правильных тетраэдров - это как раз правильный октаэдр: многогранник из восьми треугольников с вершинами, расположенными в центрах граней куба.

2. Свойства правильных многогранников.

2. 1. Сфера и правильные многогранники.

Вершины любого правильного многогранника лежат на сфере (что вряд ли вызовет удивление, если вспомнить, что вершины любого правильного многоугольника лежат на окружности). Помимо этой сферы, называемой «описанной сферой», имеются еще две важные сферы. Одна из них, «срединная сфера», проходит через середины всех ребер, а другая, «вписанная сфера», касается всех граней в их центрах. Все три сферы имеют общий центр, который называется центром многогранника.

Радиус описанной сферы Название многогранника Радиус вписанной сферы

Тетраэдр

Додекаэдр

Икосаэдр

2. 1. Самосовмещения многогранников.

Какие самосовмещения (вращения, переводящие в себя) есть у куба, тетраэдра и октаэдра? Заметим, что некоторая точка-центр многогранника - при любом самосовмещении переходит в себя, так что все самосовмещения имеют общую неподвижную точку.

Посмотрим, какие вообще в пространстве бывают вращения с неподвижной точкой А. Покажем, что такое вращение обязательно является поворотом на некоторый угол вокруг некоторой прямой проходящей через точку А. Достаточно у нашего движения F(c F(A) = A) указать неподвижную прямую. Найти её можно так: рассмотрим три точки M1, M2 = F(M1) и M3 = F(M2), отличные от неподвижной точки А, проведём через них плоскость и опустим на неё перпендикуляр АН - это и будет искомая прямая. (Если М3 = М1, то наша прямая проходит через середину отрезка M1M2, a F - осевая симметрия: поворот на угол 180°).

Итак, самосовмещение многогранника обязательно является поворотом вокруг оси, проходящей через центр многогранника. Эта ось пересекает наш многогранник в вершине или во внутренней точке ребра или грани. Следовательно, наше самосовмещение переводит в себя вершину, ребро или грань, значит, оно переводит в себя вершину, середину ребра или центр грани. Вывод: движение куба, тетраэдра или октаэдра, совмещающее его с собой, есть вращение вокруг оси одного из трёх типов: центр многогранника - вершина, центр многогранника - середина ребра, центр многогранника - центр грани.

Вообще, если многогранник совмещается с самим собой при повороте вокруг прямой на угол 360°/m, то эту прямую называют осью симметрии m-го порядка.

2. 2. Движение и симметрии.

Основной интерес к правильным многогранникам вызывает большое число симметрий, которыми они обладают.

Рассматривая самосовмещения многогранников, можно включить в их число не только вращения, но и любые движения, переводящие многогранник в себя. Здесь движение - это любое преобразование пространства, сохраняющее попарные расстояния между точками.

В число движений, кроме вращений, нужно включить и зеркальные движения. Среди них - симметрия относительно плоскости (отражение), а также композиция отражения относительно плоскости и поворота вокруг перпендикулярной ей прямой (это - общий вид зеркального движения, имеющего неподвижную точку). Конечно, такие движения нельзя реализовать непрерывным перемещением многогранника в пространстве.

Рассмотрим подробнее симметрии тетраэдра. Любая прямая, проходящая через любую вершину и центр тетраэдра, проходит через центр противоположной грани. Поворот на 120 или 240 градусов вокруг этой прямой принадлежит к числу симметрий тетраэдра. Так как у тетраэдра 4 вершины (и 4 грани), то мы получим всего 8 прямых симметрий. Любая прямая, проходящая через центр и середину ребра тетраэдра проходит через середину противоположного ребра. Поворот на 180 градусов (полуоборот) вокруг такой прямой также является симметрией. Так как у тетраэдра 3 пары ребер, мы получаем еще 3 прямые симметрии. Следовательно, общее число прямых симметрий, включая тождественное преобразование, доходит до 12. Можно показать, что других прямых симметрий не существует и что имеется 12 обратных симметрий. Таким образом, тетраэдр допускает всего 24 симметрии.

Прямые симметрии остальных правильных многогранников можно вычислить по формуле [(q - 1)N0 + N1 + (p - 1)N2]/2 + 1, где р-число сторон правильных многоугольников, являющихся гранями многогранника, q – число граней, примыкающих к каждой вершине, N0 – число вершин, N1 – число ребер и N2 – число граней каждого многогранника.

Гексаэдр и октаэдр имеют по 24 симметрии, а икосаэдр и додекаэдр– по 60 симметрий.

Все правильные многогранники имеют плоскости симметрии (у тетраэдра их - 6, у куба и октаэдра - по 9, у икосаэдра и додекаэдра - по 15).

2. 3. Звёздчатые многогранники.

Кроме правильных многогранников красивые формы имеют звёздчатые многогранники. Их всего четыре. Первые два были открыты И. Кеплером (1571 - 1630), а два других почти 200 лет спустя построил Л. Пуансо (1777 - 1859). Именно поэтому правильные звёздчатые многогранники называются телами Кеплера - Пуансо. Они получаются из правильных многогранников продолжением их граней или рёбер. Французский геометр Пуансо в 1810 году построил четыре правильных звёздчатых многогранника: малый звёздчатый додекаэдр, большой звёздчатый додекаэдр, большой додекаэдр и большой икосаэдр. У этих четырёх многогранников грани - пересекающиеся правильные многогранники, а у двух из них каждая из граней представляет собой самопересекающийся многоугольник. Но Пуансо не сумел доказать, что других правильных многогранников не существует.

Спустя год (в 1811г.) это сделал французский математик Огюстен Луи Коши (1789 - 1857). Он воспользовался тем, что согласно определению правильного многогранника, его можно наложить на самого себя так, что произвольная его грань совместится с наперёд выбранной. Из этого следует, что все грани звёздчатого многогранника равноудалены от некоторой точки-центра сферы, вписанной в многогранник.

Плоскости граней звёздчатого многогранника, пересекаясь, образуют ещё и правильный выпуклый многогранник, то есть платоново тело, описанное около той же сферы. Это платоново тело Коши назвал ядром данного звёздчатого многогранника. Тем самым звёздчатый многогранник можно получить, продолжая плоскости граней одного из платоновых тел.

Из тетраэдра, куба и октаэдра звёздчатые многогранники получить нельзя. Рассмотрим додекаэдр. Продолжение его рёбер приводит к замене каждой грани, звёздчатым правильным пятиугольником, а в результате получается малый звёздчатый додекаэдр.

На продолжении граней додекаэдра возможны следующие два случая: 1) если рассматривать правильные пятиугольники, то получается большой додекаэдр.

2) если же в качестве граней рассматривать звёздчатые пятиугольники, то получается большой звёздчатый додекаэдр.

Икосаэдр имеет одну звёздчатую форму. При продолжении грани правильного икосаэдра получается большой икосаэдр.

Таким образом, существует четыре типа правильных звёздчатых многогранников.

Звёздчатые многогранники очень декоративны, что позволяет широко применять их в ювелирной промышленности при изготовлении всевозможных украшений.

Многие формы звёздчатых многогранников подсказывает сама природа. Снежинки – это звёздчатые многогранники. С древности люди пытались описать все возможные типы снежинок, составляли специальные атласы. Сейчас известно несколько тысяч различных типов снежинок.

Заключение

В работе раскрыты следующие темы: правильные многогранники, построение правильных многогранников, самосовмещение, движение и симметрии, звёздчатые многогранники и их свойства. Мы узнали, что существует всего лишь пять правильных многогранника и четыре звёздчатых правильных многогранника, которые нашли широкое применение в различных областях.

Изучение платоновых тел и связанных с ними фигур продолжается и поныне. И хотя основными мотивами современных исследований служат красота и симметрия, они имеют также и некоторое научное значение, особенно в кристаллографии. Кристаллы поваренной соли, тиоантимонида натрия и хромовых квасцов встречаются в природе в виде куба, тетраэдра и октаэдра соответственно. Икосаэдр и додекаэдр среди кристаллических форм не встречаются, но их можно наблюдать среди форм микроскопических морских организмов, известных под названием радиолярий.

Идеи Платона и Кеплера о связи правильных многогранников с гармоничным устройством мира и в наше время нашли своё продолжение в интересной научной гипотезе, которую в начале 80-х гг. высказали московские инженеры В. Макаров и В. Морозов. Они считают, что ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обуславливают икосаэдро-додекаэдровую структуру Земли. Она проявляется в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра.

Многие залежи полезных ископаемых тянутся вдоль икосаэдро-додекаэдровой сетки; 62 вершины и середины рёбер многогранников, называемых авторами узлами, обладают рядом специфических свойств, позволяющих объяснить некоторые непонятные явления. Здесь располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана. В этих узлах находятся озеро Лох-Несс, Бермудский треугольник. Дальнейшие исследования Земли, возможно, определят отношение к этой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место.

Структура правильных многогранников очень удобна для изучения множества преобразований многогранника в себя (повороты, симметрии и т. д.). Получающиеся при этом группы преобразований (их называют группами симметрии) оказались весьма интересными с точки зрения теории конечных групп. Эта же симметричность позволила создать серию головоломок в виде правильных многогранников, начавшуюся «кубиком Рубиком» и «молдавской пирамидкой».

Большой интерес к формам правильных многогранников проявляли также скульпторы, архитекторы, художники. Их всех поражало совершенство, гармония многогранников. Леонардо да Винчи (1452 – 1519) увлекался теорией многогранников и часто изображал их на своих полотнах. Сальвадор Дали на картине «Тайная вечеря» изобразил И. Христа со своими учениками на фоне огромного прозрачного додекаэдра.